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ICBatlas: A Comprehensive Resource for Depicting
Immune Checkpoint Blockade Therapy Characteristics
from Transcriptome Profiles
Mei Yang1,2, Ya-RuMiao1, Gui-YanXie1,Mei Luo1, Hui Hu1, HangFai Kwok3,4, Jian Feng5, andAn-YuanGuo1,2

ABSTRACT
◥

Immune checkpoint blockade (ICB) therapy provides re-
markable clinical benefits for multiple cancer types. Much work
is currently being conducted to investigate the mechanisms of
ICB therapy at the transcriptional level. Integrating the data
produced by these studies will help us give more insight into
the transcriptomic features of ICB therapy. We collected the
transcriptome and clinical data of ICB-treated patient samples
from the Gene Expression Omnibus, ArrayExpress, The Cancer
Genome Atlas, and dbGaP databases. On the basis of the clinical
information, all samples are initially classified into response/
nonresponse or pretreatment/on-treatment groups. Differential
expression, pathway enrichment, and immune cell infiltration
analyses are performed between the samples from different
groups. We also introduce the Response Score (RS) calculated
by integrating the variability degree and the frequency of the

dysregulated genes in the responders to evaluate the impact
of gene expression on the response. Finally, all the above-
mentioned contents are integrated into the ICBatlas database.
ICBatlas provides the transcriptome features of ICB therapy
through the analysis of 1,515 ICB-treated samples from 25
studies across nine cancer types. The data in ICBatlas include
clinical outcomes, treatment-related genes, biological pathways,
and immune cell infiltration. Users can investigate the above-
mentioned transcriptome features in the response (R vs. NR) or
treatment (Pre vs. On) modules at the data set, cancer type,
or immune checkpoint level and compare the degree of gene
impact on the response in the RS module. ICBatlas is the first
database to show the transcriptome features on ICB therapy in
human cancers and freely available at http://bioinfo.life.hust.
edu.cn/ICBatlas/.

Introduction
Cancer immunotherapy, particularly immune checkpoint block-

ade (ICB) therapy, has achieved notable clinical success and
became the focus of many clinical studies. The primary checkpoint
antibodies that target PD-1/PD-L1 or CTLA-4 have demonstrated
improved prognosis in patients with skin cutaneous melanoma
(SKCM; refs. 1, 2) and patients with other cancer types, such as
non–small cell lung cancer (NSCLC), gastric cancer, and bladder
cancer (3, 4). Nevertheless, ICB treatment in clinical trials has
demonstrated a rather wide range of response rate (10%–40%;
refs. 2, 5–7) and approximately 30% relapse (8), which sometimes

leads to considerable side effects and costs. Therefore, further studies
are needed to determine mechanisms of ICB therapy response and
responder characteristics.

With the development of next-generation sequencing, transcrip-
tomics has become a routine technology in biomedical research.
The past efforts of characterizing ICB therapy at the transcriptome
level focused on the dynamic changes during treatment, the
differences between responders and nonresponders (9, 10), resis-
tance mechanisms (11, 12), and immune-related adverse events
(13–15). Furthermore, some response-related biomarkers (e.g.,
cytolytic activity, IFNg , and GEP) or prediction models (e.g.,
IMPRES, IPRES, TIDE, and ICGe) derived from transcriptome
data were produced (11, 16–20). Unfortunately, most of these
signatures showed variable performance in different cohorts.
Moreover, with the limited cohort size in each clinical study, it
had been challenging to comprehensively determine mechanisms
of ICB response. At present, large amounts of ICB-related data are
being generated and scattered through public databases [e.g., Gene
Expression Omnibus (GEO), ArrayExpress, The Cancer Genome
Atlas (TCGA), and the database of Genotypes and Phenotypes
(dbGaP)]. Integrating these data will help us gain more insight
into the transcriptomic features of the clinical outcome and the
mechanisms of ICB therapy.

During the past years, a few ICB therapy-related databases have
been developed, including checkpoint therapeutic target database
(CKTTD), Tumor Immune Single Cell Hub (TISCH), and Tumor
Immune Syngeneic MOuse (TISMO; refs. 21–23). CKTTD (21) com-
piles immune checkpoint molecules (i.e., proteins, miRNAs, and
lncRNAs) and their modulators in cancer immunotherapy curated
from literature. TISCH (22) focuses on the immunotherapy-related
tumor microenvironment from single-cell data. TISMO (23) was
developed to investigate and visualize the transcriptome in syngeneic
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mouse models across different ICB treatment and response groups.
To date, however, no published database has yet compiled transcrip-
tomic characteristics of ICB therapy based on human data. Conse-
quently, current data resources must be integrated, and a human ICB
therapy-related database that can be easily accessed, analyzed, and
used by researchers must be presented.

In this study, we construct and draw a large-scale accessible data
repository called ICBatlas. ICBatlas is a comprehensive resource
depicting the transcriptomic characteristics of ICB therapy based on
the gene expression profiles of 1,515 patients from previously pub-
lished studies across nine cancer types. Overall, ICBatlas provides
search, browse, and visualization functions for integrated and re-
analyzed results based on large-scale transcriptome data. It is a
comprehensive and one-stop solution for transcriptome data-
related research on ICB therapy that is freely available at http://
bioinfo.life.hust.edu.cn/ICBatlas/.

Materials and Methods
Data collection and metainformation curation

We collected samples of human ICB therapy from GEO,
ArrayExpress, TCGA, and dbGaP by searching the keywords “ICB
therapy” “immune checkpoint inhibitor therapy” “PD-1/PD-L1”
and “CTLA4” (Supplementary Table S1). Both RNA sequencing
(RNA-seq) and microarray data were included. We downloaded
raw sequencing reads (if available) or other available formats (e.g.,
raw count, TPM, FPKM, expression matrix of microarray, etc.)
for each data set (Supplementary Table S2). Furthermore, the
clinical information for the samples, including the cancer type,
age, gender, survival time, ICB treatment, and response status, was
collected from the original article. The response was based on
Response Evaluation Criteria in Solid Tumors v1.1 (24). Respon-
ders (R) consisted of patients with complete or partial response and
nonresponders (NR) are included patients with either progressive
or stable disease. Other six samples with no response outcome were
excluded.

Data processing
Different processing methods were applied depending on the

data type to obtain more accurate expression values. For the RNA-
seq data, raw sequencing reads were downloaded and unpacked
through the SRA Toolkit (version 2.9.0-ubuntu64). FastQC (version
v0.11.5) was used for data quality control with per base sequence
quality >10 and per sequence mean quality scores >27. Trimmo-
matic (version 0.32) was used for adapter sequence removal and
trimming to obtain high-quality clean reads. The clean reads were
then mapped to the human reference genome, GRCh38, by HISAT2
(version 2.0.4; ref. 25) and SAMtools (26). StringTie (25) was used
to calculate the abundance of transcripts for each sample (i.e., TPM
and FPKM). The count data were calculated by FeatureCounts (27).
R-package oligo was used to process the raw microarray data. For
samples without available raw sequencing reads and microarray
data, the expression matrices were downloaded and log2 trans-
formed: log2(x þ 1). ComBat was used to remove the batch effect of
samples with batch covariate (28). Figure 1A depicts an overview of
the data processing workflow.

Differential expression genes and functional enrichment
analysis

The differential expression genes (DEG), including protein- and
noncoding genes, between R vs. NR and Pre vs. On for the data sets

with raw counts of RNA-seq were calculated using DESeq2 (29) with a
settled threshold (|Log2 fold change (log2FC)| > 1 and FDR < 0.05). For
samples sequenced by a microarray or those whose raw counts are not
available, the Limma (30) package was used to calculate the DEGswith
|log2FC| > 1 and P < 0.01. For each data set, the genes without an
expression in more than 70% of the samples were filtered. Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were also performed by using the R-package clus-
terProfiler (31). The gene set enrichment analysis (GSEA; ref. 32) was
used to determine the gene expression signatures that were signifi-
cantly changed between specific groups. In contrast, the gene set
variation analysis (GSVA; ref. 33) was performed to calculate the
gene set enrichment score per sample and provide increased power to
detect the subtle pathway activity changes between the groups. R-
package clusterProfiler and GSVA were implemented with the fol-
lowing gene sets: (i) Cancer hallmark, REACTOME and WikiPath-
ways of Canonical pathways, and C6 (oncogenic signature gene set
subset) in Molecular Signature Database version 7.4 (MSigDB, http://
www.gsea-msigdb.org/gsea/index.jsp; ii); 17 immune-related path-
ways from the ImmPort project (ref. 34; https://www.immport.org/
); and (iii) MHC and immunomodulatory molecules (35). The sta-
tistical significance for the GSVA was evaluated through the Wilcox-
on’s rank sum test in R language.

Immune analysis by the immune cell abundance identifier
The immune cell abundance identifier (ImmuCellAI; ref. 36) was

adopted to estimate the abundance of 24 immune cell types, which are
18 T-cell subsets [i.e., CD4þT, CD8þT, na€�ve CD4þT, na€�veCD8þT,
and cytotoxic T (Tc), exhausted T (Tex), type 1 regulatory T (Tr1),
natural regulatory T (nTreg), induced regulatory T (iTreg), T-helpers 1
(Th1), 2 (Th2), and 17 (Th17), follicular T-helper (Tfh), central
memory T (Tcm), effector memory T (Tem), natural killer T (NKT),
mucosal-associated invariant T (MAIT), and gamma–delta T cells],
as well as six other types of immune cells [i.e., B cells, natural killer
cells, monocytes, macrophages, neutrophils, and dendritic cells (DC)].
The statistical significance between groups was calculated by the
Wilcoxon rank sum test.

Survival analysis
The survival analysis of a specified gene was calculated using a

Kaplan–Meier (KM) model through R packages (“survival” and
“survminer”). The cox regression analysis was performed to evaluate
the impact of genes on prognosis based on the calculated hazard ratio
(HR) genes withHR > 1 were defined as risky genes and genes withHR
< 1 were defined as protective genes. The P values less than 0.05 were
considered statistically significant.

Response score calculation
A response score (RS) was introduced to systematically measure the

impact power of the DEGs on the ICB response from the data set and
cancer type levels. The RS for each gene in the DEGs was calculated as
follows:

Data set level:

RS ¼
Pn

i ¼ 1
log2FC

n � 1
� �

�Pn
i ¼ 1 T;

T ¼ 1; up� regulated in responders

�1; down� regulated in responders

� ð1Þ

where n is the number of data sets with the DEG.

A Comprehensive Resource For ICB Therapy

AACRJournals.org Cancer Immunol Res; 10(11) November 2022 1399

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/10/11/1398/3215724/1398.pdf by C

entral South U
niversity user on 07 N

ovem
ber 2022

http://bioinfo.life.hust.edu.cn/ICBatlas/
http://bioinfo.life.hust.edu.cn/ICBatlas/
http://bioinfo.life.hust.edu.cn/ICBatlas/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://www.immport.org/


A

B

Raw sequencing data
Batch effect correction

Expression matrix:

Expression matrix:

ICBatlas

Expression matrix:

Expression matrix:

Expression matrix:

R
N

A
-s

eq
M

ic
ro

ar
ra

y

1. Quality control (FastQC)
2. Filter/trimmer (Trimmomatic)
3. Alignments (Hisat2,SAMtools)
4. Raw count data (featureCounts)
5. FPKM/TPM (StringTie)

Cancer type level
Immune checkpoint level

Normalized data/count

Raw data

R package:oligo
1. Background correction
2. Normalization
3. Summarization

Deposited into ICBatlas
expression matrix

1. Identification of DEGs
2. GO enrichment of DEGs
3. KEGG enrichment of DEGs
4. GSEA
5. GSVA
6. Immune cell abundance
7. Survival analysis

Immune checkpoint
blockade therapy atlas

SKCM

UC

RCC

NSCLC

GC

GBM

HCC

MPM

HNSCC

anti-CTLA4
79 (5.21 %)

(R/NR: 15/64)anti-PDL1
325 (21.45%)
(R/NR:238/87)

(200/364)

(252/146)

(62/276)
(30/69)

(12/33)

(18/16)
(6/16)

(4/6)

(2/3)

0 100 200 300

300

200

100

0
UC RCC SKCM NSCLC GCGBMHCCMPM HNSCC

Number of samples

N
um

be
r 

of
 s

am
pl

es

400 500

NR R

anti-PD1
1,050 (69.31%)
(R/NR:300/750)

anti-PD1 +anti-CTLA4

61(4.03%) (R/NR:33/28)

On-NR

On-R

Pre-NR

Pre-R

Group

Treatment

anti-CTLA4

anti-PDl

anti-PDl+
anti-CTLA4
anti-PDL1

IM
vi

go
r2

10

G
S

E
17

63
07

G
S

E
11

16
36

P
M

ID
:3

24
72

11
4

S
R

P
12

81
56

P
M

ID
:3

38
06

96
3

G
S

E
67

50
1

S
R

P
12

81
56

S
R

P
01

15
40

S
R

P
09

47
81

S
R

P
23

04
14

E
R

P
10

54
82

S
R

P
07

07
10

S
R

P
15

05
48

G
S

E
93

15
7

S
R

P
25

08
49

G
S

E
12

22
20

S
R

P
01

15
40

S
R

P
30

27
61

T
C

G
A

S
R

P
15

05
48

E
R

P
10

54
82

S
R

P
15

05
48

G
S

E
93

15
7

G
S

E
13

69
61

S
R

P
18

34
55

S
R

P
21

70
40

E
R

P
10

77
34

S
R

P
15

50
30

G
S

E
14

09
01

G
S

E
14

09
01

G
S

E
99

07
0

G
S

E
93

15
7

Data set level

Data set level

Yang et al.

Cancer Immunol Res; 10(11) November 2022 CANCER IMMUNOLOGY RESEARCH1400

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/10/11/1398/3215724/1398.pdf by C

entral South U
niversity user on 07 N

ovem
ber 2022



Cancer type level:

RS0 ¼
Pm

i ¼ 1
RS

m �Pm
i ¼ 1 T

0;

T0 ¼ 1; RS is positive
�1; RS is negative

�

wherem is the number of cancer types with specific DEG, andRS is the
data set level score of a specific cancer type calculated by Eq. (1). Genes
with a positive RS are denoted as positive genes, and their high
expression may contribute to a good prognosis of ICB therapy. In
contrast, genes with a negative RS are denoted as negative genes, and
their high expression may lead to a bad prognosis of ICB therapy. The
RS provides researchers with the degree of gene impact on the response
from the data set and cancer type levels, which is positively associated
with the absolute RS value.

Database development
ICBatlas was run with Python Flask-RESTful API frameworks

(https://flask-restful.readthedocs.io/). HTML, CSS, JavaScript
(https://angularjs.org), and Bootstrap (https://getbootstrap.com/)
were used for the rendering and interactive operations of the front-
end pages. The back-end data were organized and queried by Mon-
goDB v3.2 (https://www.mongodb.com/). The charts were manufac-
tured by Echarts and R scripts. The Bootstrap Table was used to
construct data tables. Finally, the bioinformatics analyses were imple-
mented by R scripts. ICBatlas is hosted on the Apache HTTP Server
(https://httpd.apache.org/).

Data availability
The data analyzed in this study were obtained from published

papers are referenced to and publicly available accordingly. The
sources of all data sets were shown in Supplementary Table S1.

Results
Data summary of ICBatlas

ICBatlas (http://bioinfo.life.hust.edu.cn/ICBatlas/) encompasses
1515 samples (1,388 RNA-seq and 127 RNA-microarray) treated by
PD-1/PD-L1 inhibition, CTLA-4 inhibition, or their combination
across nine different cancer types (i.e., SKCM), renal cell carcinoma
(RCC), urothelial cancer (UC), hepatocellular carcinoma (HCC),
NSCLC, gastric cancer, head and neck squamous cell carcinoma
(HNSCC), malignant pleural mesothelioma (MPM), and glioblastoma
(GBM) from 25 data sets (Fig. 1A and B). Among all cancer types, the
SKCM samples accounted for the largest proportion (37.18%), fol-
lowed by UC (26.23%), and other cancer types (Fig. 1B). The overall
response rate was 38.68%with 586 responders and 929 nonresponders,
with a minimum of 18.3% in the RCC and amaximum of 63.3% in the
UC. The response rates for the samples in other cancer types (i.e.,
SCKM, NSCLC, gastric cancer, GBM, HCC, MPM, and HNSCC)
ranged from 25% to 40% (Table 1, Fig. 1B, Supplementary Tables S3
and S4).

Analysis of data in ICBatlas
Data analyses were performed at the data set, cancer type, and

immune checkpoint levels. The DEGs, pathway enrichment, immune
cell abundance, and survival analysis between responders versus
nonresponders (R vs. NR) and pretreatment and on-treatment (Pre
vs. On) were performed for each level. The analysis comparing R and
NR results indicated that the numbers of significantly enriched hits
identified in each data set between R and NR were diverse, demon-
strating the data set heterogeneity (Fig. 2A–D).We observed some
shared upregulated genes in responders across different data sets.
CXCL10 was significantly upregulated in responders in four melano-
ma data sets with different treatments, and CXCL9, BAAT, FCGR2C,
and P2RY8 were significantly upregulated in responders in three
melanoma data sets (Fig. 2B). In addition, some signaling pathways
were significantly upregulated in the response group in multiple data
sets or cancer types, including the negative regulation of the immune
system process, cytokine–cytokine receptor interaction, toll-like
receptor signaling pathway, and BCR signaling pathway, among others
(Fig. 2C). The composition and the abundance of immune cells in the
tumor microenvironment were also significantly associated with
immunotherapy efficacy (36, 37). Hence, in this work, we systemat-
ically analyzed the association of immune cell infiltration with ICB
therapy by ImmuCellAI, which can calculate the abundance of 24

Figure 1.
Overview of the data statistics and processing in this project.A,Overview of the data-processingworkflow of ICBatlas. Three types of expressionmatrices (data set,
cancer type, and immune checkpoint levels)were obtained from the rawRNA-seq data. Thematrices of cancer type and immune checkpoint level were integrated by
different cancer and immune checkpointwith batch effect correction.B,Bar plot (large) showing the number of patients collected in each data set. On-R, On-NR, Pre-
R, and Pre-NR represent on-treatment response, on-treatment nonresponse, pretreatment response and pretreatment nonresponse, respectively. Treatment
(different colors of circular represent differential target antibody). Bar plot (small) showing the number of patients for each cancer type. The numbers in brackets
represent the number of patients in the response (R) and nonresponse (NR) groups. Pie chart showing the different target antibody classification. The numbers in
brackets represent the number of patients in the response and nonresponse groups.

Table 1. Summary of meta information of ICBatals database.

RNA-seq Microarray Total

Data sets 19 6 25
Cancer types 6 7 9
Samples 1,388 127 1,515

Pretreatment 1,234 127 1,361
On-treatment 154 — 154
Response Pre: 494; On: 50 Pre: 42 586
Nonresponse Pre: 740; On: 104 Pre: 85 929

Cancer
SKCM 531 33 564
RCC 327 11 338
UC 387 11 398
HCC — 22 22
NSCLC 64 35 99
GC 45 — 45
HNSCC — 5 5
MPM — 10 10
GBM 34 — 34

Target antibody
Anti–PD-1 932 118 1,050
Anti–PD-L1 325 — 325
Anti-CTLA4 79 — 79
Anti–PD-1þanti-CTLA4 52 9 61

Abbreviations: SKCM, Skin cutaneous melanoma; RCC, renal cell carcinoma; UC,
urothelial cancer; HCC, hepatocellular carcinoma; NSCLC, non–small cell lung
cancer; GC, gastric cancer; HNSCC, head and neck squamous cell carcinoma;
MPM, malignant pleural mesothelioma; GBM, glioblastoma.
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immune cell types in samples. The result demonstrated that the Tc,
Tex, Th1 cells, and macrophages were significantly higher in the
responders across multiple data sets or cancer types (Fig. 2D). More-
over, hundreds of risk and protective genes were identified by the
survival analysis. High CXCL9, and CXCL10 expression were signif-
icantly associated with a better prognosis for overall survival (OS) or
progression-free survival (PFS) at least in two data sets or cancer types,
which were also identified as upregulated genes in the responders
(Supplementary Fig. S1A and S1B). The comparison results for Pre and
On showed that the expression of some genes (e.g., CXCL9, PDCD1,
and LAG3) were significantly increased inmore than one data set after
the ICB treatment (Supplementary Fig. S2A and S2B). Some signaling
pathways, including the cytokine–cytokine receptor interaction, PD-1
signaling, and BCR signaling pathway, were also significantly enriched

by the upregulated genes in the on-treatment samples. The immune
cell distribution analysis result indicated that the abundance of the
gamma–delta T and Th1 cells was significantly elevated after treat-
ment, whereas neutrophils exhibited the opposite (Supplementary
Fig. S2C).

Identifying response signatures in ICBatlas
We introduced the RS calculated on the basis of the fold-change

and the universality of the DEGs at the data set or cancer type
level to make it more intuitive for users to learn the degree of gene
impact on the ICB response (see Materials and Methods section
for details).The degree of gene impact on the ICB response was
positively associated with the absolute value of the RS (i.e., genes
with a positive RS were upregulated in responders and contributed
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Figure 2.

Transcriptomic difference between
R and NR based on pretreatment
patients.A,Bar chart showing the num-
bers of DEGs (above), and GO terms
enriched by them (bottom) with signif-
icant statistical difference. Color of
the bar indicates different cancer
types. Circles filled by different color in
the bottom represent for different
treatments. Level of statistical signifi-
cance: DEGs (|log2FC|>1 and FDR <0.05
or |log2FC|>1 and P <0.05); GO terms
(Padjust < 0.05). B, Heat map showing
the presence of some significant DEGs
shared by samples from patients with
anti–PD-1–treated melanoma. Positive,
upregulated in responders. Negative,
downregulated in responders. C, Heat
map showing shared pathways among
multiple data sets enriched by positive
genes. D, Immune cells with signi-
ficantly different distribution between
responders and nonresponders (un-
paired two-sided Wilcoxon test P <
0.05). Blue represents cell types with
higher infiltration in responders, and
red represents a higher infiltration in
nonresponders.

Yang et al.

Cancer Immunol Res; 10(11) November 2022 CANCER IMMUNOLOGY RESEARCH1402

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/10/11/1398/3215724/1398.pdf by C

entral South U
niversity user on 07 N

ovem
ber 2022



to good prognosis, whereas genes with a negative RS exhibited the
opposite). We systematically analyzed the top 20 genes ranked by
the positive and negative RS (Fig. 3A and B). Note that some genes
were shared between the data set and cancer type levels (e.g., IDO1,

CXCL9/13, and CHIT1 with a positive RS and XIST with a negative
RS; Fig. 3C), which may have more potential to serve as biomarkers
in ICB therapy. There are also genes whose RS is particularly
associated with specific cancer types. For example, the RS of TYRP1
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Figure 3.

Summary of top genes and pathways ranked by response score (RS) from data set and cancer type levels. A and B, Bar plots showing top 40 genes ranked by RS
(20 positive and 20 negative) from data set level (A) and cancer type level (B). Genes with a blue bar were positive genes, which expressed higher in responders.
Oppositely, geneswith red barwere negative genes, which expressed higher in nonresponders. Genes in red-font are those have been reported to be relatedwith the
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is specifically high in SKCM (RS ¼ �18.18), which is reported to be
associated with response to anti–PD-1 therapy and can serve as a
prognostic factor in melanoma. We also conducted literature
research on the abovementioned genes, with the result, indicating
that seven of 20 genes with a positive RS serve a good prognosis in
ICB therapy (e.g., increased CXCL9/10, and IDO1; refs. 38–43). The
high CXCL9/10 expression was particularly indicative of a good
prognosis in SKCM (OS and PFS) and UC (OS; Supplementary
Fig. S1). For genes with a negative RS, only XIST was reported to
present a poor prognosis (42). In other words, genes identified by
previous research to associate with positive prognosis are more
likely to be identified in our model of gene expression associations.
The study of genes contributing to a poor prognosis is also
important, and our database may provide meaningful clues in this
regard.

To further investigate the biological function of response-
related genes, we selected the top 20 genes ranked by the positive
and negative RS to conduct a pathway enrichment analysis. The
result shows that genes with a positive RS were mainly enriched
in the immune- and cellular response–related pathways, such as
cellular response to biotic stimulus, signaling receptor activator
activity, response to chemokine, chemokine-mediated signaling
pathway, and cellular response to molecule of bacterial origin
(Fig. 3D). In contrast, genes with a negative RS were mainly
enriched in cell damage–related pathways, such as the cell

junction assembly and the external encapsulating structure
organization.

User-friendly interactive web interface for ICBatlas
All the abovementioned data and results were ultimately inte-

grated into the ICBatlas database. The website consists of four
main functional components: “Response (R vs. NR),” “Treatment
(Pre vs. On),” “RS,” and “Search” (Fig. 4). The contents in the
“Response (R vs. NR)” and “Treatment (Pre vs. On)”modules were
included at the data set, cancer, and immune checkpoint levels
(Fig. 4A and B) to provide comprehensive information on ICB
therapy to users. The items displayed at each level include the
significant DEGs, GO and KEGG pathway terms, GSEA and GSVA
gene sets, immune cells, and survival risk between the samples in
different groups (i.e., R vs. NR and Pre vs. On). The RS module
provides a scoring system (RS) for evaluating the degree of gene
impact on the ICB response at the data set or cancer level (Fig. 4C),
through which users can evaluate which genes have a greater
potential to serve as an ICB response biomarker. In the “Search”
module, ICBatlas provides multiple ways users can enter queries.
First, a quick search box is located on the top panel of each page for
querying by one specified gene symbol. Second, a universal search
function for genes, pathways (gene sets), and immune cells
(Fig. 4D) is provided, making it convenient for users to retrieve
interesting information related to ICB therapy.

Response (R vs. NR) Module
R vs. NR exploration Pre vs. On exploration

Response score (RS) Module

Treatment (Pre vs. On) Module

Search module

Each RNA-seq data set Each RNA-seq data set

Each RNA-microarray data set

Analysis Analysis
DEGs DEGs
GO
KEGG
GSEA
GSVA
Immune cell abundance

GO
KEGG
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GSVA

A quick search box

Three advanced search modules
By gene

     A scoring system to evaluate the evidence of DEGs
based on the log2FC in R vs. NR and number of data sets
or cancer types.

By pathway
By immune cell

Immune cell abundance

Combined RNA-seq data set Combined RNA-seq data set

Survival

A

C D

B

Figure 4.

Overviewof the ICBatlasweb-based resource.A andB,Response and treatment pages. The available tables and relatedplots (enrichment plot, boxplot, and survival)
are listed. C, The Response Score (RS) page provides a scoring system. For each positive gene, a higher absolute score indicates that the gene is relevant to ICB
response with a higher confidence. D, Search modules in ICBatlas, including quick search and advanced search.
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Discussion
ICBatlas is the first comprehensive expression resource for

analyzing, curating, and visualizing the transcriptomic character-
istics of ICB therapy based on human patient data. The database
is composed of content that covers comparisons of the R vs. NR
and Pre vs. On groups at the data set, cancer and immune
checkpoint levels, demonstrating unique advantages over other
related resources. First, it has the most comprehensive human ICB
data to date, ideal for academic research. Second, the database
modules are especially informative for researchers to rapidly
investigate the impact of candidate genes, pathways, or immune
cells on ICB therapy from large-scale data. Third, ICBatlas will
facilitate the process for validating hypotheses and developing
potential biomarkers to predict response to ICB therapies, as well
as reduce the potential for erroneous conclusions drawn from a
single data set.

Although ICBatlas collected and reanalyzed nearly all publicly
available transcriptome data sets from the samples with ICB
therapy, the limited cancer type and the limited sample numbers
in some data sets remained inadequate, which may lead to bias
in the analysis result. In the future, we will continue to collect
additional available data and implement more functional mod-
ules related to the ICB therapy response to update ICBatlas
regularly. ICBatlas will serve as a comprehensive resource
and data reuse tool for researchers of cancer immune-related
topics and will provide novel insights into for ICB response and
resistance.
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